# Texas Fire Meteorology Research:

Proximity Observations for Wind-Driven Grassland Wildfire Starts

Composites for Southern Great Plains Wildfire Outbreaks

T. Todd Lindley

Senior Meteorologist

NOAA/NWS Lubbock, Texas







Texas Statewide Fire Weather Meeting College Station, Texas 7 December 2010

#### Motivation: for intensive fire meteorology research in Texas

an increase in damaging wildfire activity since the mid 1990s



- multi-decadal drought
- increased population
- changing land usage
- wildfires driven by weather
- a prolific natural hazard in Southern Great Plains since 2005



# What is the Wildfire - Weather relationship?

how do wind-driven grassland wildfire environments differ from the more widely-studied forest fires?





do Red Flag Warnings accurately predict fire environments?

what are "critical" fire weather conditions?



#### Quantifying the near-fire weather

- collected WTM proximity observations for 99 severe wildfires Jan 2006 May 2010
- "severe" defined ≥ 300 acres
- fire start time/location determined by remote sensing
- collected 5 minute WTM observations



radar "smoke plumes"

satellite "hot spots"



#### Relative Humidity & Wind Speed:

most commonly used predictive meteorological variables for fire behavior



 combinations of humidity & wind near fire starts have a slight linear relationship

P=0.36 r=0.003

• statistical mean: RH=12% WS=27 mph

# Relative Humidity & Wind Speed:





- statistically quantify the frequency of wildfire development per specific RH & WS environments
- critical combinations of RH & WS do not conform to a rigid criteria
- Red Flag criteria accounts for 64% of wildfire environments

### Relative Humidity & Wind Speed:

differentiate starts by eventual fire size



 $RH \le 15\%$  $WS \ge 20 \text{ mph}$ 

• accounts for a majority & most extreme wildfire starts



#### Temperature:

• grassland wildfires can occur in any temperatures

• peak in occurrence when temperatures are above seasonal averages



# Relative Humidity Recovery:

- RH recovery is proxy for fine fuel moisture before the diurnal burn period
- grassy fuels respond quickly to near-surface weather...cure within a few hours
- high RH recoveries limit significant fire starts, but do not preclude them
- low RH recoveries ensure fuel moisture is too low to resist fire



## Climatological Trends:

- wind-driven grassland fires peak winter-early spring
- starts peak around midday

• most fire starts occur very soon after onset of critical weather



# COMMENTS ON FIRE STARTS

• Red Flag Warnings used to identify "critical" combinations of dry fuels and weather that support extreme fire behavior

What better way to verify "critical" conditions than with observed wildfire evolution?

- Most dangerous starts in Southern Plains are non-meteorological in environments favorable for wind-driven fires
  - utility lines 40 mph G60 mph
  - vehicles...cars, trucks, and trains
  - cigarettes
  - welding/outdoor construction
  - outdoor lighting
  - re-ignition of old burns
  - arson



Since late 2005... fire activity peaked in the Southern Plains during 10 "outbreaks"

#### devastating public impacts:

- more than 200 major wildfires
- 2.6 million acres burned
- 1,000+ structures destroyed
- 24 deaths and 166 injuries

# Are these dangerous fire weather patterns predictable?



Texas wildfire outbreaks were quickly recognized to be associated with the passage of intense upper air storms and winds



- Impacted large spans of eastern
   New Mexico, Texas, Oklahoma –
   the Southern Great Plains
- the synoptic scale pattern was known and highly-predictable, but specific processes involved were not
- a composite methodology was used to identify common/key atmospheric features...their relative location and magnitude
- composites analogous to early efforts toward ingredient-based forecast methodologies for severe storms









A Texas & Oklahoma Wildland Fire Disaster







Synoptic Composite-Like Pattern



500 mb - observed



500 mb - composite

Synoptic Composite-Like Pattern



surface - observed



surface - composite

Mesoscale Pattern & Fuels

- apply categorical frequencies from proximity obs study
- apply fuel intelligence
- apply temperature analysis
- fire activity concentrated





Keystone event that helped narrow geographical areas of heightened risk within synoptic composite-like patterns

- composite is an average of 10 outbreaks in the Southern Great Plains
- two thermal/wind configurations that help focus scope of highest risk



composite



normal



near parallel

#### Future Work:

- very little is known about fire meteorology in the Southern Great Plains grasslands
- complexity of atmosphere/biofuel interactions
- forecasters continuously ask for fuel intel
- improve NWS fire weather services via the introduction of observations/science



http://www.srh.noaa.gov/lub/?n=science-wtefirewx

Correspondence:
Todd.Lindley@noaa.gov

NWS Lubbock, Texas

